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Abstract

Many floating structures in naval architecture and ocean engineering cannot be modelled as a single rigid body. Even

for ships, models of interconnected bodies may be necessary for an adequate description of the dynamics. The dynamic

behavior of these floating structures is significantly influenced by fluid–structure interactions. So far, most available

methods for analyzing these interactions are restricted to single bodies, small wave amplitudes and small body motions,

or both. In the present paper, a two-dimensional boundary integral approach with fully nonlinear boundary conditions

on the free surface is used to investigate the dynamic behavior of catamarans in nonlinear beam seas. In the model

introduced here, the two hulls of a catamaran are connected by elastic beams. Beams and hulls are modelled as

multibody systems. The results of numerical simulations are shown for selected configurations.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Fast catamaran ferries are rapidly becoming important as means of transportation. Since such ferries cross open

waters, sea keeping considerations are important. In this paper, we investigate the influence of the elasticity of the

coupling between the hulls on the motion of the bihull–beam system. The connecting beams are modeled as a chain of

rigid beams with rotational springs and dashpots in the joints in order to represent stiffness and damping.

The dynamic behavior of floating bodies is significantly influenced by fluid–structure interaction between the bodies

and the fluid. Hence, in addition to the differential equation of motion of the dry system the governing equations of the

fluid must be solved. For a single floating body results can be found in the literature, e.g., Cointe et al. (1990), Tanaka

and Nakamura (1993), van Daalen (1993), and Haack (1996).

Only few of the programs described in these references have been designed to handle more than one floating body.

Rigid connections between the bodies or connections that do not reduce the number of degrees of freedom, e.g., ideal

(massless) springs, are relatively easy to implement. If the connection between the bodies constrains the motion, the

dynamics of the structure are more difficult to describe, Kral and Kreuzer (1999). Additional effort is necessary to

discretize continuous elastic elements with distributed mass.

The numerical treatment of the problem considered here requires an efficient computation scheme for the solution of

the flow problem. Compared with other methods the direct boundary-element method (BEM) offers several advantages

for this specific application for the following reasons.

(i) All quantities of interest—either given or unknown—are located on the boundary itself (see problem formulation).

*Corresponding author.

E-mail address: kreuzer@tu-harburg.de (E. Kreuzer).

0889-9746/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0889-9746(03)00012-4



(ii) In general large, arbitrarily shaped domains have to be considered for practical purposes; this causes large

discretization expenses for other methods (e.g., finite elements or finite differences). Since only nodes on the boundaries

have to be considered, large deformations are easier to handle with BEM.

(iii) High curvatures arise when the discrete model of the geometry is formulated, especially on the free surface and

where the free surface meets floating bodies. With the fully Lagrangian BEM formulation, the density of nodes

increases in regions of high curvatures.

(iv) Only the wetted parts of the surfaces of the structures have to be taken into account, in order to adapt the method

to fixed or floating structures. Even large body movements will not require a remeshing in the fluid domain. Finite

element methods will cause remeshing in this region due to element distortion or moving grids. Finite volume methods

combined with a volume of fluid interface model will not require remeshing either, but these methods tend to spread the

interface between two fluids or fluids and solids over a number of cells.

(v) The time-dependent pressure distribution on the wetted surfaces is easily available for the force and moment

loading of the structures. With indirect methods, e.g. the panel method, the pressure has to be calculated from source

strengths. For finite element and finite volume methods pressure distribution is available as part of the solution, too.

2. Problem formulation

All real fluids are viscous and compressible. To simplify the model, we ignore less important effects. In order to solve

the fluid flow problem usual assumptions of incompressibility and irrotational flow are made, Newman (1977). These

assumptions are justified for the following reasons. Floating bodies moving mainly with the waves cause negligible or

no separation near the corners of the bodies, hence, viscosity has little effect on the flow. The compressibility of water is

very small, therefore, the density of the fluid is not changed within the range of expected pressure differences.

The discussed simplifications allow to introduce the potential flow concept, described by Laplace’s equation

div u ¼ div grad F ¼ r2F ¼ 0; ð1Þ

where u is the fluid velocity and F the corresponding velocity potential. The equation of motion of the fluid particles can

be reduced to Bernoulli’s equation

DF
Dt

¼ �gy �
1

r
p �

juj2

2
þ vTu; ð2Þ

where g is the gravitational acceleration, y is the vertical position of the considered point, r is the density of the fluid,

and the pressure is p: In this formulation we must distinguish between the velocity vector of a fluid particle u and the

velocity vector v of a point moving relative to the fluid. A schematic representation of the numerical model is shown in

Fig. 1.

The flow problem can be solved by transforming Laplace’s equation, following Brebbia et al. (1984), into an integral

equation of the form

CðxÞFðxÞ ¼
Z
G

unðnÞGðx; nÞ dgðnÞ �
Z
G
FðnÞ

@Gðx; nÞ
@nðnÞ

dgðnÞ: ð3Þ

Here, G is the boundary of the considered domain O; C is a geometry-dependent constant, G the fundamental solution

of the problem, i.e., G ¼ 1=2p lnð1=jx � njÞ in two dimensions, F again the velocity potential, un ¼ @F=@n is the

Fig. 1. Discretization and boundary conditions.
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component of the velocity vector in the normal direction at the boundary, and x and n denote the position vectors for

field and source points, respectively.

The integral equation (3) provides one equation per field point or node x: If either the normal velocity unðxÞ or the
velocity potential FðxÞ is known on every part of the boundary, a system of linear equations can be obtained. If O is

discretized by a direct boundary element approach, we obtain the approximation

ðC þ HÞ *FðxÞ ¼ F *unðxÞ; ð4Þ

where the vectors *F and *un consist of the nodal values. The matrices C ; H ; and F are defined by

C ¼ ½Ci;j 	;

H ¼
Z
G
jiðnÞ

@Gðxj ; nÞ
@nðnÞ

dgðnÞ
� �

; i ¼ 1;y; nj;

F ¼
Z
G
jiðnÞGðxj ; nÞ dgðnÞ

� �
; j ¼ 1;y; nq; ð5Þ

where nj depends on the order of the shape functions ji of the elements (linear, quadratic, splines, etc.), and nq is the

number of nodes. Normally, the number of global shape functions nj equals the number of nodes nq:
To develop a mixed boundary value problem, the known and the unknown boundary conditions in Eq. (4) have to be

rearranged into a set of linear equations

Ay ¼ b: ð6Þ

Here, A is a dense and non-symmetric matrix, in general. The right-hand side b of Eq. (6) is given by the following

boundary conditions (see Fig. 1):

(a) at impermeable fixed boundaries, e.g., the bottom or walls of a wave tank, the velocity component in the normal

direction to the boundary vanishes, i.e., un ¼ 0;
(b) at impermeable moving boundaries the motion, i.e., normal velocity, is prescribed by a function f in space and

time by un ¼ f ðx; y; tÞ; this type of boundary is needed to describe features such as wave makers;

(c) at the impermeable boundaries of the submerged parts of free floating rigid bodies the time-dependent normal

velocity is given by the normal direction of the time derivative of the nodal position un ¼ ðdr=dtÞn; and is calculated

from the equations of motion of the rigid body;

(d) the free surfaces of the fluid are described by the fluid particles themselves. At these boundaries, the time-

dependent velocity potential FðtÞ is given; thus, the normal velocity of a fluid particle can be written un ¼ @FðtÞ=@n; and
is part of the boundary element solution.

On the impermeable boundaries (a)–(c) the normal velocity un is known. As there is no flow through these

boundaries, the normal velocity relative to these boundaries must vanish. The nodes in the discrete model are, therefore,

free to move parallel to the boundary but not normal to it. In order to determine the time-dependent boundary

conditions (c) and (d), an additional initial value problem has to be set up and solved. The motion of the fluid particles

at the free surfaces is described by a Lagrangian formulation, with v set equal to u in Eq. (2). The equations of motion

for the fluid particles yield in fully nonlinear form

Dxfl

Dt
¼ rF ¼ u;

DF
Dt

¼ �gy �
1

R
p þ

juj2

2
: ð7Þ

Here, xfl ¼ ½xfl yfl 	T denotes the position vector of the fluid particles on the free surface, and p ¼ pamb the pressure on

the free surface. The initial condition is given by Fðt ¼ 0Þ ¼ F0:
Kral et al. (1997) have shown that even for moderate forcing amplitudes nonlinearities have to be taken into account.

The positions and velocities of the floating bodies are known in every time step, they are part of the boundary

conditions, whereas the pressure distribution on the wetted surface, i.e., the acceleration, is part of the solution. The

potential flow problem is solved for a known set of state variables of the multibody system, and the solution of the flow

field provides forcing vectors for the equation of motion of the multibody system. Since the flow field does not depend

(at least not directly) on the acceleration of the floating bodies, the differential equations of the multibody system can be

solved after the boundary integral equations have been solved. Nevertheless, the differential equations of both

subsystems have to be integrated simultaneously with respect to time.

In long-crested beam seas the forward speed has no effect on the wave excitation, therefore, a two-dimensional model

is sufficiently accurate to analyze the dynamics. Bow and stern influences are neglected in the model.
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The coupling beams of the catamaran have been modeled as a chain of seven rigid bodies coupled by hinges

(cylindrical joints) are constrained by rotational springs and dashpots. Bockstedte (1998) investigated different

discretizations for the elastic beams. It was found by investigating several models of the coupling beams that seven

discrete links are sufficient for the considered configuration and frequency range1 to get an accurate representation of

the continuous elastic beam. The relative error of the first natural frequency of the seven link model compared to the

continuous beam is less than 2.5 percent. The first eigenmodes of the discrete model resemble those of the continuous

model very well.

The generalized coordinates of the discrete model shown in Fig. 2 are

z1 ¼ ½xC1 yC1 j1 j2 j3 j4 j5 j6 j7	
T ð8Þ

with respect to the centers of mass of the first hull. All angles ji ði ¼ 1; 7Þ are measured from the horizontal plane in the

positive sense. In state space representation, z2 is the time derivative of z1; i.e., z2 ¼ ’z1:

z2 ¼ ½ ’xC1 ’yC1 ’j1 ’j2 ’j3 ’j4 ’j5 ’j6 ’j7	T: ð9Þ

The reference frames used to describe the positions of the coupling elements are shown in Fig. 2. The initial values are

z1ðt ¼ 0Þ ¼ ½xC10 yC10 j10 j20 j30 j40 j50 j60 j70	
T ð10Þ

and

z2ðt ¼ 0Þ ¼ ½ ’xC10 ’yC10 ’j10 ’j20 ’j30 ’j40 ’j50 ’j60 ’j70	T: ð11Þ

The equations of motion were generated with the help of the multibody system program NEWEUL (Kreuzer and

Schiehlen, 1990). The equations of motion of the rigid bodies can be formulated in the state space as follows:

ð12Þ

where z denotes the vector of state variables, I is the identity matrix and M the mass matrix. The sub-matrix A1 ¼
�M�1ðK þ NÞ contains the conservative and non-conservative forces, while A2 ¼ �M�1ðD þ GÞ accounts for the

damping and gyroscopic forces. The vector hðtÞ describes the excitation, which includes the external forces f e and

the external torques te: They are calculated from the time-dependent pressure distribution pðtÞ on the wetted surfaces of

Fig. 2. Reference frames of the multibody system.

1For the parameters given below the first natural frequencies of the beam are 4.3, 11.8, and 23:8 Hz; whereas the forcing frequencies
are of the order of 1 Hz:
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the floating bodies (see Fig. 3) as follows:

f e ¼
Z
Gsub

pðtÞn dg; ð13Þ

te ¼ ds 
 f e; ð14Þ

where n is the outward unit normal vector and ds is the distance vector from the center of mass to the center of

buoyancy of the floating body. The unknown time-dependent pressure on the submerged surface is obtained by

transforming (2) into

pðtÞ ¼ r �gy �
juj2

2
�
DF
Dt

þ vTu

� �
: ð15Þ

The time derivative DF=Dt can be approximated numerically, if the nodal values *F of the previous time step (or steps)

have been stored.

The numerical implementation of this approach (Haack et al., 1991; Haack, 1996) uses cubic spline-elements on the

free surface in order to approximate the extreme curvature of nonlinear gravity waves and to compute the tangential

derivatives in addition to the normal derivatives. The normal direction does not change continuously where the free

surface meets floating structures or walls of the tank. These points are modelled by means of the double nodes. Haack

(1996) studied the convergence of the method and compared calculated pressures on the wave-maker to measured data.

The agreement of the numerical and experimental results was excellent.

3. Results

We intended to verify the simulations we present in this paper experimentally, therefore, all calculations of this paper

are based on a two-dimensional mathematical representation of the wave tank in the laboratory of the department of

Mechanics and Ocean Engineering of the Technical University Hamburg-Harburg. The parameters of the idealized

catamaran model were chosen to match a model we can use for experiments in the laboratory. The tank is equipped

with a flap type-wave maker as sketched in Fig. 4.

In order to simulate the dynamic behavior, we have to solve a (numerical) initial value problem. Hence, we have to

prescribe initial conditions or values. All simulations start with initial conditions set to zero, because nonzero initial

conditions on the free surface are difficult to prescribe. In this case a set of nodal positions, potential values, and

velocities, which are solutions of the differential equation, i.e., a restart of a previous simulation, would be required.

The simulation is based on an idealized catamaran model, Fig. 5. The mass of the floating bodies is mhull ¼ 237:3 kg;
the moment of inertia is Ihull ¼ 20 kg m2 with respect to the centroid. The parameters of the connection between the

hulls have been chosen to simulate a polypropylene plate of 5 mm thickness. The plate has a mass per section of

mlink ¼ 0:9 kg and a length of llink ¼ 0:2 m: The rotational springs have a stiffness of cj ¼ 67:71 N m; the damping
coefficient is dj ¼ 0:1 N m s: The amount of damping is in the order of the expected material damping. Damping has a

Fig. 3. Excitation forces.
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10 m
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0 
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Fig. 4. Initial position in the numerical wave tank.
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stabilizing effect on the simulation. The cross-section of the two symmetric bodies is a simplified hull cross-section of a

twin-hull. Their geometry is given in Fig. 6.

The weight of the beam causes a roll moment with respect to the center of gravity of the hulls. To compensate for this

roll moment the center of mass of the hulls was moved 6 mm outwards from the center of buoyancy. Since the

simulation starts with a straight beam, which is not the equilibrium position, free vibrations starting with an initial

deflection of the beam are observed (e.g. Fig. 7). The beam vibrations cause the small ripples that can be seen in the

plots of the roll angles of the hulls.

The dynamic behavior of the floating multibody system has been simulated for flap frequencies from 0.6 to 1:2 Hz:
Since the simulation uses fully reflecting boundary conditions on the far end, the energy in the tank is increasing as long

as the flap is moving. To limit the energy input the flap was stopped after 10 s: The roll angles are shown in Figs. 7–11,
where j1; and j7 are the roll angles of the left and right hull, respectively. The angles are measured in the

mathematically positive sense from the horizontal plane. The flap amplitude was adjusted to keep the wave height

(measured for the second wave train) at about 50 mm:

Fig. 6. Geometry of the hulls.
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Fig. 7. Roll motion of the hulls for a flap frequency of 1:2 Hz:

Fig. 5. Parameters of the system
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In the frequency range 0.8–1:0 Hz the roll motion of the hulls is dominated by counter-phase motions of the hulls (see
Figs. 8 and 9). At 1:2 Hz; the highest flap frequency, the motion is nearly in phase although there are large differences in
the roll amplitudes of the hulls, Fig. 7. For 0:6 Hz; the lowest frequency, the roll motion of the bodies is almost perfectly
in phase, Fig. 10. Since this frequency can be identified in the frequency spectrum of the roll motion for all forcing

frequencies, 0:6 Hz seems to be close to a natural frequency of the system. The coupling beam is not very stiff here,

therefore, the natural roll frequency of a single hull, i.e. about 0:47 Hz; is probably close to a natural frequency of the

coupled system. The stiffness of the coupling beam increases the frequency slightly, hence, 0:6 Hz is in the expected

range of the natural frequencies.

In Fig. 11 the roll motion of the elastic catamaran is compared with the roll motion of the catamaran with rigid

coupling. The wave height was reduced to about 30 mm; since the forcing wave frequency of 0:6 Hz is close to the heave
natural frequency of 0:56 Hz of the rigid catamaran. The wavelength at this frequency is about twice the overall width

of the model, hence, even for the rigid model significant roll amplitudes are observed.

The wavelengths vary from 1:08 m ð1:2 HzÞ to about 4:5 m ð0:6 HzÞ: Hence the phase velocity of the waves is

1.30–2:60 m=s: The group velocity is half the phase velocity for deep water, i.e. wavelength up to 2.0 m in this case. The

group velocity is approaching the phase velocity for shallow water. The numerical wave tank uses fully reflective

boundary conditions of the far end. Based on the group velocities the reflections will reach the floating bodies after 21 s

for 1:2 Hz and 10 s for 0:6 Hz: The declining roll angles on the right side of Fig. 10 are caused by reflections that reach
the hull with a phase shift.
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Fig. 8. Roll motion of the hulls for a flap frequency of 1:0 Hz:
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Fig. 9. Roll motion of the hulls for a flap frequency of 0:8 Hz:
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The method is not sensitive to changes in the discretization of the fluid boundaries. The submerged parts of the hulls

are formed by six straight sections per hull. For the results shown every section has been discretized using cubic

elements and nine nodes.

The simulation of the motion of a rigid catamaran was repeated using a finer and a coarser discretization on the

wetted part of the hulls, i.e., 13 and 5 nodes, respectively. The relative difference between the finest and coarsest

discretization is shown in Fig. 12. The size of the time step was unchanged. The difference of the horizontal positions of

the center of gravity is less than 0.45 percent or 127 mm: Since the floating bodies were not restricted by a mooring

system, there is no restoring force to the sway motion. Therefore, the differences in the sway motion can increase almost

continuously.

It may be noted that irregular frequencies that can cause problems with panel methods in frequency domain are

unknown to the direct boundary element approach in time domain based on the fundamental solution used here.

The deformation of the beam can be seen in Figs. 13 and 14, where we have sketched typical deformations of the

connecting beam. In these figures a section of the numerical wave tank is shown. Although the hulls are rolling in phase,

the beam deformation is much bigger for 0:6 Hz compared with that for 0:8 Hz:
The internal moments in the joints can easily be calculated using the generalized coordinates. In Fig. 15, the bending

moments at the joints are plotted. The moment at the ith joint is

Mi ¼ cjðjiþ1 � jiÞ þ djð ’jiþ1 � ’jiÞ: ð16Þ
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Fig. 10. Roll motion of the hulls for a flap frequency of 0:6 Hz:
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Fig. 11. Roll motion of the elastic catamaran compared with a rigid model, 0:6 Hz; reduced wave height.
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R. Kral et al. / Journal of Fluids and Structures 17 (2003) 875–885 883



Note that the distance along the beam is measured from the center of the beam. The amplitudes are nearly symmetric

with respect to the center-line. The bending moments have opposite signs due to different curvature of the beam at

varying positions, see Fig. 15.

All simulations were carried out with a time step Dt ¼ 0:01 s: About 2 h CPU time are required on a desktop

PC (Athlon 900) for 20 s simulation time. For the parameters given above, the lowest natural frequency of the

beam is an order of magnitude higher than the natural frequencies of the rigid-body movements of the hulls. If the

beam stiffness is increased significantly, the differential equations of the multibody–BEM system will become stiff;

the fourth order Adams–Bashforth–Moulton time integrator that is used here limits the range of stable

simulations.

4. Conclusions

The dynamic behavior of an idealized twin-hull catamaran in beam seas was simulated for a range of forcing wave

frequencies. The elasticity of the beam connecting the hulls of the catamaran has a significant influence on the overall

behavior of the system. The multibody system representation of a catamaran is a suitable idealization to analyze the

influence of the beam stiffness on the roll motion. Internal loads, e.g., bending moments, can easily be calculated from

the generalized coordinates. The reaction forces in the joints would have to be included explicitly in the model to

evaluate these forces with other methods than boundary elements plus multibody systems.

The approach described here is not limited to twin-hulls. It can easily be applied to trimarans or other multihulls with

an arbitrary number of hulls.

Since seven discrete links are required to get a good representation of the elastic beam between the hulls in the

problem considered here, the capacity of the multibody dynamics tool is the limiting factor for the complexity of the

model. The (nonlinear) differential equations for a chain of seven rigid bodies are almost impossible to generate without

appropriate software tools. The equations of motions as generated by NEWEUL (over 8000 lines) had to be simplified

using trigonometric identities and MAPLE to get a minimum of 353 lines of Fortran code.

The fluid dynamics are described by partial differential equations. The equations require integration with respect

to space and time. Once the fluid flow has been calculated for the current time step using the boundary element

method, the multibody and the fluid dynamics can be integrated with respect to time. Here, the integration of

the multibody dynamics part of the presented approach with respect to time is more demanding than that of the

fluid dynamics part. The differential equation of the multibody system can become stiff, hence, special integration

schemes for stiff equation have to be used. Since the evaluation of the boundary integral equations is rather

expensive compared to the equation of motion of the multibody system, a small number of function calls per time step is

desirable.
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